Physics Colloquium: Precise Patterning in the Inner Ear

David Sprinzak, TAU

22 December 2019, 14:00 
Shenkar Building, Melamed Hall 006 
Physics Colloquium

Abstract: 

Precise periodic organization of cells is required for the function of many organs and tissues. The development of such periodic patterns is typically associated with mechanisms based on intercellular signaling such as lateral inhibition and Turing patterning. Here we show that the transition from disordered to ordered checkerboard-like pattern of hair cells and supporting cells in the mammalian hearing organ, the organ of Corti, is based on mechanical forces rather than signaling events. Using time-lapse imaging of mouse cochlear explants, we show that hair cells rearrange gradually into a precise checkerboard-like pattern through a tissue-wide shear motion that coordinates intercalation and delamination events. Using mechanical models of the tissue, we show that global shear and local repulsion forces on hair cells are sufficient to drive the transition from disordered to ordered cellular pattern. Our findings suggest that mechanical forces drive precise hair cell patterning in a process strikingly analogous to the process of shear-induced crystallization in polymer and granular physics.

 

 

Event Organizer: Dr. Iair Arcavi

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained here and / or the use of such content is in your opinion infringing, Contact us as soon as possible >>
Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
UI/UX Basch_Interactive