Condensed Matter Seminar: Charged fermions coupled to Ising gauge fields: Symmetry breaking, confinement, and emergent Dirac fermions

Snir Gazit, UC Berkeley

12 December 2016, 11:00 
Kaplun Building, Flexer Hall (118) 
Condensed Matter Seminar

Abstract:

Lattice gauge theories are ubiquitous in physics, describing a wide range of phenomena from quark confinement to quantum materials. At finite fermion density, gauge theories are notoriously hard to analyze due to the fermion sign problem. Here, we investigate the Ising gauge theory in 2+1 dimensions, a problem of great interest in condensed matter, and show that it is free of the sign problem at arbitrary fermion density. At generic filling, we find that gauge fluctuations mediate pairing leading to a transition between a deconfined BCS state to a confined BEC. At half-filling, a $\pi$-flux phase is generated spontaneously with emergent Dirac fermions. The deconfined Dirac phase, with a vanishing Fermi surface volume, is a non-trivial example of violation of Luttinger's theorem due to fractionalization. At strong coupling, we find a single continuous transition between the deconfined Dirac phase and the confined BEC, in contrast to the expected split transition.

 

 

Event Organizer: Prof. Eli Eisenberg

 

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing, Contact us as soon as possible >>